マーケティングツールやチャネルの増加で増え続けるデータ。ただしデータは、実用的なインサイトを提供してこそ価値があります。ビジネス成長の鍵はマーケティング強化のためのデータ戦略にあります。
マーケティングツールやテクノロジー、チャネルや顧客との接点の増加により、運用するべきデータが年々増え続けています。このような状況下でマーケティング担当者は、自社ビジネスにとって最も重要となる指標を決定し、データをどのように利用できるかを明確にする必要があります。
ビジネスを前進させるには、データをドシドシ集めるだけではなく、それらを意味あるインサイトに変換し、実用性を持たせなくてはなりません。では、データドリブンな基盤を構築してマーケティングを強化するデータ戦略とはどのようなものなのでしょうか。
現在収集しているデータの実用性を評価したことはあるでしょうか。データの量は増えているのにそこから抽出するインサイトの量は変わっていないなど、非効率的なデータ管理をしている場合はデータの実用性を評価するフレームワークを活用してみるといいかもしれません。このフレームワークはファネル(セルフサービス型、営業支援型、ボトムアップ型、トップダウン型)に分かれており、上から下にいくほどにレベルが上がるようになっています。
全ての組織でレベル3まで、最低でもレベル2まで実現できるのが理想的です。例えば営業支援型ではGTMチームは収集したデータをもとに以下のアクションを取れることが求められます
レベル3の段階ではコミュニケーションが非常に重要で特に注意が必要です。経営幹部などがデモリクエストを行った場合は、製品を紹介するだけではなく、彼らにどんな価値を提供できるかというメッセージを伝える必要がありますし、逆にユーザーに対しては機能を細かく説明することが求められるでしょう。オーディエンスごとにセグメント化し、ペルソナに特化したコンテンツでセールスをサポートすることがコンバージョンを高め、最終的には案件の増加につながります。このように実際の実務にデータを活用できるか、それぞれ当てはめて考えてみると良いでしょう。
データドリブンにプロジェクトを進行するにはデータチームやエンジニアリングチームと機能横断的な強い関係を作ることが不可欠です。実際にどのような方法で連携を強化していけば良いのでしょうか。
マーケティングチーム全員が同じレベルでデータ管理やオペレーションをできれば理想的ですが、実際には難しい場合がほとんどです。これがボトルネックになっている場合はデータの管理や分析を専門的に担当するポジションをマーケティングチーム内に作ると良いでしょう。海外ではMOps、マーケティングオペレーション担当がこの役割を担う場合もあり、各チャネルマーケターと密接に連携し、データの分析はもちろん正しいデータ収集を働きかけたりしているのです。新しいツール導入などもMOpsがサポートしているため、これらから上がってくるデータをマーケティングチーム全体が活用できるようなオペレーションの仕組みづくりも実現することができるのです。
また、MOpsよりもさらに専門的にデータをみるデータエンジニアやデータサイエンティストがマーケティングチームに組み込まれるケースも増えてきています。マーケティングデータが膨大に増えたことはもちろん、CRM、MA、広告ツールなど様々なツールに点在するようになった今、マーケティングパフォーマンスデータを意味ある形で繋げ、インサイトを抽出するのは大変難しくなっています。そのため社内に中央のデータ組織を持ちつつ、マーケティングチーム直属のアナリストやデータエンジニアが、戦略上重要な測定基準の優先順位付けと文脈付けを行うという組織形態が増えているのです。中央のデータ組織と連携することで、会社全体でデータオペレーションを確立することもできますし、組織を一気通貫して分析することができるのです。
このように専属のデータチームを設ける場合はMOpsチームと密接な連携が必要になります。プロジェクトで同じ目標に向かってデータをトラッキングするためにはミスコミュニケーションを減らすためにブリーフを作成し詳細情報を共有することが重要です。
各チームが必ずしも必要な情報をすべて持っている訳ではないので、MOpsチームがアナリティクスチームを早い段階で、且つ頻繁に巻き込む必要があります。MOps担当者には、ビジネス目標に向けてプロジェクトを推進し、ステークホルダーおよびパートナーとしてアナリティクスを引き込む責任があります。
例えばマーケティング担当者が、営業担当と対話から有用なデータのヒントを得たらMOpsがそのデータの収集をデータチームへ依頼することができます。営業からのフィードバックを詳細に記録しておくことで、実際のビジネス上の課題に関連付けてデータ活用の背景を説明し、データチームへのリクエストを具体化することが可能になります。
いかがでしたでしょうか。今日の多くの企業は、データは山ほどあるにも関わらず実用的なインサイトを得る手段がないという課題を抱えています。まずは自社にとっての実用性を基準に必要なデータを選別し、その上でデータドリブンなマーケティング施策を行うオペレーション体制を整えましょう。